
Conflict Graphs for Parallel Stochastic Gradient Descent

Darshan Thaker*, Guneet Singh Dhillon*

Abstract— We present various methods for inducing a
conflict graph in order to effectively parallelize Pegasos.
Pegasos is a stochastic sub-gradient descent algorithm for
solving the Support Vector Machine (SVM) optimization
problem [3]. In particular, we introduce a binary tree-
based conflict graph that matches convergence of a well-
known parallel implementation of stochastic gradient de-
scent, know as HOGWILD!, while speeding up training
time. We measure these results on a real-world dataset
in a binary classification setting. This allows us to run
various experiments to compare iterations between Parallel
Pegasos and traditional Pegasos in order to effectively
measure classification accuracy.

I. INTRODUCTION

A Support Vector Machine (SVM) is a popular
classification algorithm. It learns a hyperplane that
linearly separates a group of points and is also as wide
as possible.

In a binary classification task, a halfspace created
by the hyperplane corresponds to points in one label,
whereas the other halfspace corresponds to points in
the other label. A hyperplane is represented by the
normal vector to the hyperplane, denoted as w. And
the classification for a data point x is determined by its
inner product with w. If the dot product is positive, x
is labeled 1, and −1 otherwise.

Additionally, there might be several hyperplanes that
would be able to divide the training data linearly with
a hyperplane. However, in order for the SVM to be
generalizable, the algorithm picks the hyperplane that
is as wide as possible. Wideness of a hyperplane is
determined by the minimum distance of the hyperplane
to all the data points. In other words, the boundary
separating the two classes of data is picked in a way
that the minimum distance to a data point from both the
classes is the same. So while predicting a classification
for a data point, the absolute value of its inner product
is desired to be above a certain threshold. This leads to
the hinge loss function for a given point x and its label
y (while ignoring the bias term):

`(w; (x, y)) = max {0, 1− y〈w, x〉}

Here, 〈u, v〉 denotes an inner product between u and
v. The width is proportional to 1/‖w‖2.

* These authors contributed equally to this report.

In order to maximize the width, the norm of w
needs to be minimized. This can be incorporated as
a regularization term, in addition to the hinge loss of
each data point.

Formally, given a training set of X =
{(x1, y1), . . . , (xm, ym)}, the optimization problem for
an SVM is:

min
w

λ

2
‖w‖22 +

1

m

∑
(x,y)∈X

`(w; (x, y))

In the above problem, λ is the regularization pa-
rameter and `(w; (x, y)) is the hinge-loss function. The
Pegasos algorithm solves the primal objective function
above using a vanilla stochastic sub-gradient descent
method.

II. PEGASOS

In stochastic sub-gradient descent, at each iteration,
the objective function considered is that for a particular
data point picked for that iteration.

Initializing w0 = 0, at iteration t, a random data
point, (xit , yit), is picked, where index it is in the set
{1, ...,m}. The objective function to be considered for
this data point is:

λ

2
‖wt‖22 +

1

m
`(wt; (xit , yit))

Calculating the sub-gradient of the above objective
function, we obtain:

∇t = λwt − 1[yit〈wt, xit〉 < 1]yitxit

where 1[yit〈wt, xit〉 < 1] takes the value 1 if the
condition is met, and 0 otherwise.

The update for w is:

wt+1 = wt − ηt∇t

At the end of T iterations, wT+1 is the required
normal to the hyperplane that defines the SVM. The
pseudo-code for the algorithm is given in Algorithm 1.

1

Algorithm 1 Pegasos
Given: X = {(x1, y1), . . . , (xm, ym)}, λ, T

Initialize: Set w0 = 0
for t = 1, 2, ..., T do

Choose it ∈ {1, ...,m} uniformly at random
Set ηt = 1

λt
if yit〈wt, xit〉 < 1 then

Set wt+1 ← (1− ηtλ)wt + ηtyitxit
else

Set wt+1 ← (1− ηtλ)wt
end if

end for
return wT+1

A. Mini-Batch

Instead of considering just one data point at every
iteration, k data points can be considered in order to
give us a better estimate to the actual gradient of the
objective function.

At iteration t, a set of k indices, At is chosen at
random. The objective function to be considered for the
data point with these indices becomes:

λ

2
‖wt‖22 +

1

m

∑
i∈At

`(wt; (xi, yi))

Calculating the sub-gradient of the above objective
function, we obtain:

∇t = λwt −
∑
i∈At

1[yit〈wt, xi〉 < 1]yixi

The update for w is:

wt+1 = wt − ηt∇t

At the end of T iterations, wT+1 is the required
normal to the hyperplane that defines the SVM. The
pseudo-code for the algorithm is given in Algorithm 2.

Algorithm 2 Mini-Batch Pegasos
Given: X = {(x1, y1), . . . , (xm, ym)}, λ, T , k

Initialize: Set w0 = 0
for t = 1, 2, ..., T do

Choose At ⊂ {1, ...,m} uniformly at random,
where |At| = k

Set A+
t = {i ∈ At : yi〈wt, , xi〉 < 1}

Set ηt = 1
λt

Set wt+1 ← (1− ηtλ)wt + ηt
k

∑
i∈A+

t
yixi

end for
return wT+1

III. PARALLELIZING STOCHASTIC GRADIENT
DESCENT

Various approaches have been proposed to parallelize
stochastic gradient descent (SGD) methods.This
problem is inherently serial, since the parameter vector,
or w, of one iteration depends directly upon on the
parameter vector of the previous iteration.

Looking at how Mini-Batch works, it is easy to
parallelize the algorithm by creating k threads in
each iteration, where each thread gets a data point
and it finds the update for the parameter vector. The
updates for each iteration can be summed up once each
thread is done to get the update for the parameter vector
for that iteration. This though, is not a very big speed-up.

One notable approach for parallelizing SGD is the
HOGWILD! approach [2], or the lock-free approach. In
this algorithm, a thread operates on a shared-memory
parameter vector without using any locks. This means
that reads and writes can happen concurrently, and one
thread may be modifying the parameter vector, while
another thread reads an inconsistent vector for updates.
However, the success of this method is reliant upon
a measure of sparsity and randomness, ensuring that
these inconsistent reads and writes do not affect the
convergence drastically. In fact, when the input data is
extremely sparse, this method performs very well and
converges fast.

Another approach for parallelizing SGD, which is
a more recent approach, is the CYCLADES algorithm
[1]. In this algorithm, we focus on picking indices of
the data points to use for updating the gradients. The
key observation here is that inconsistent reads/writes
occur when two data points have overlapping supports,
or equivalently, these two data points have a ’conflict’.
In this scenario, sparsity is helpful, since it is easier
to find two data points that do not have overlapping
supports. Suppose we wished to pick k indices of
the data points to use for updating the gradients. The
contribution of CYCLADES is to randomly sample k
indices and model the conflicts between these k indices
as a conflict graph. Thus, we connect two indices if
there is a conflict between them. Then, a connected
component of the conflict graph represents a set of
indices that can safely be updated in parallel on a
core. This gives us an estimate for the number of cores
we need to perform a SGD mini-batch update with
batch size k, and gives us a set of indices that can be
allocated to each core.

The contribution of this report borrows ideas from
the above algorithms, but ultimately uses a different

2

approach to select non-conflicting indices to successfully
parallelize stochastic sub-gradient descent in the context
of SVMs. In particular, we note that HOGWILD! has
no constraints on the indices that are picked, whereas
CYCLADES imposes many constraints, so in theory, we
could have many more connected components in a set of
indices than cores available. Thus, the motivation behind
our approach is that given a fixed number of cores, we
would like a way to return a set of indices that can be
updated on different threads.

A. Induced Conflict Graph Generation

We consider four techniques for generating sets of
indices that may or may not have a conflict. Suppose we
wish to pick a set of unique indices A where |A| = k.
The conflict graph G = (V,E) conceptually will have
|V | = k nodes and some number of edges between
nodes, where an edge between two nodes denotes a
conflict between the two nodes (i.e. an overlap in the
features). At a high level, each method below induces
a conflict graph and enforces some invariants on the
number of edges |E| in this graph. It is important to
note that the conflict graph is never explicitly generated,
but only used as a way to reason about various sets
of indices and their effects on convergence rates. Each
method is an iterative algorithm that starts off with a
random index and builds up an induced conflict graph
one index at a time.

1) This approach will enforce the invariant that every
node will have an edge with at least one node.
A simple approach to enforce this invariant is
the algorithm that adds a new index to the set
of indices if it conflicts with at least one of the
previously generated indices. However, to reduce
the lookup time of conflicts with all previous
nodes, which requires O(|V |) time, we only check
conflicts with O(log (|V |)) nodes.

The goal of this is twofold. First, this approach
introduces more stochasticity into the set of
indices since we are only checking a small subset
of previous indices for conflicts and discarding
if there are no conflicts with these indices.
Secondly, this approach improves lookup time for
estimating the conflicts that a particular index has
with previously generated indices. Note that it is
possible for this method to discard more indices
than necessary, if they do not happen to conflict
with their ancestors. However, for large values of
k, this method will, in expectation, find a set of
’valid’ indices faster than an approach that scans
all previously generated nodes.

To implement this, it is beneficial to visualize a set
of indices as a binary tree. We wish to enforce that
every index conflicts with at least one of its ances-
tors, since the number of ancestors is logarithmic
with respect to the total number of vertices. The
iterative algorithm conceptually creates a binary
tree in a level-order traversal and checks conflicts
with all of the ancestors of a given node.

2) This approach enforces the invariant that every
node must conflict with every other node. In par-
ticular, we build a complete conflict graph.

3) This approach uses a similar binary tree-based ap-
proach, however enforcing invariants on the number
of non-edges in the graph, or the number of nodes
that do not conflict. In this algorithm, we ensure
that an index does not conflict with at least one of
the ancestors in its binary tree representation.

4) This approach enforces the invariant that every
node must not conflict with any other node. In
particular, we build an empty conflict graph with
no edges.

Observe that Methods 1 and 3 above attempt to
improve sampling time without negatively affecting the
convergence rate of Parallel Pegasos.

IV. EXPERIMENTS

A. Dataset

We ran our evaluations and collected performance
metrics on the CCAT data set. It is used for a
classification task taken from the Reuters RCV1
collection.

Data Points = 804414
Training Size = 723973
Testing Size = 80441

Features = 47236
Sparsity = 0.16%

B. Plots

We note three statistics on a single run of a method.
These statistics are:
• The loss function value on the testing set for each

iteration (λ = 0).
• The testing set percentage error rate for each iter-

ation.
• The norm of the parameter vector for each iteration.
The different Parallel Pegasos methods vary based

on the conflict graph generation. In particular, there are
4 Parallel Pegasos methods, corresponding directly to
the 4 conflict graphs mentioned in Section III.

These three statistics were run on two values of k
(k = 2 and k = 10), which represents the mini-batch

3

Fig. 1. Loss Function for k = 2

Fig. 2. Norm of Parameter Vector for k = 2

Fig. 3. Percent Error for k = 2

Fig. 4. Loss Function k = 10

Fig. 5. Norm of Parameter Vector for k = 10

Fig. 6. Percent Error for k = 10

4

size or the number of indices to sample for a conflict
graph. These runs were for 1000 iterations, and a λ
value of 10−4, borrowed from [3].

However, these figures do not capture the timing
aspect of the various methods, which is described in
Table I. Note that these timings include calculating the
statistics presented in this report, per iteration.

TABLE I
ALGORITHM TIMINGS

k 2 10
Mini-Batch 641.188916922 541.698472977

Parallel1 437.151793003 439.413945913
Parallel2 455.587590933 441.605366945
Parallel3 486.384338856 453.869709969
Parallel4 462.699862957 6521.923002

HOGWILD! 565.418184042 601.219654083

Note that the Parallel Pegasos algorithms that use
a binary-tree based algorithm are much faster than
the mini-batch and HOGWILD approaches, while not
sacrificing significant decreases in the percentage error
rate, especially for the larger values of k. In fact, conflict
graph 1 performs extremely well and almost matches the
performance of the best method. When running conflict
graph 4 for large values of k, Parallel Pegasos takes
an extremely long amount of time, which is expected
since generating nodes without any conflicts will take
numerous iterations. This is another reason why the
binary-tree based conflict graph performs well, since it
does not take many iterations to keep a high convergence
rate.

V. CONCLUSION AND FUTURE WORK

Various methods were presented on how to get
indices to parallelize Pegasos. Theoretically, inducing
conflicts to parallelize should not work. However,
we observed that inducing certain kinds of conflicts
improved the algorithm. Some important questions to be
asked here are why are such algorithms out-performing
algorithms with no conflicts? Also, can there be any
theoretical guarantees on such algorithms? We are
not certain as to why these results so closely match
performance of HOGWILD!.

In general, SVMs go hand-in-hand with Kernel meth-
ods, that help classify data that is not linearly separable
in the dimension space that they are provided in. The
introduction of a Kernel method only changes the objec-
tive function by substituting the inner product (Kernel
trick). However, parallelizing the objective function then
becomes very hard as the dimensions that the data

points are raised to can be infinite (Gaussian Kernels
are examples of that).

REFERENCES

[1] X. Pan, M. Lam, S. Tu, D. Papailiopoulos, C. Zhang, M. I. Jordan,
K. Ramchandran, C. Re, and B. Recht. Cyclades: Conflict-free
asynchronous machine learning. arXiv preprint arXiv:1605.09721,
2016.

[2] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In Advances
in Neural Information Processing Systems, pages 693–701, 2011.

[3] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos:
Primal estimated sub-gradient solver for svm. Mathematical
programming, 127(1):3–30, 2011.

5

	Introduction
	Pegasos
	Mini-Batch

	Parallelizing Stochastic Gradient Descent
	Induced Conflict Graph Generation

	Experiments
	Dataset
	Plots

	Conclusion and Future Work
	References

